The Insertion Encoding of Permutations
نویسندگان
چکیده
We introduce the insertion encoding, an encoding of finite permutations. Classes of permutations whose insertion encodings form a regular language are characterized. Some necessary conditions are provided for a class of permutations to have insertion encodings that form a context free language. Applications of the insertion encoding to the evaluation of generating functions for classes of permutations, construction of polynomial time algorithms for enumerating such classes, and the illustration of bijective equivalence between classes are demonstrated. Under consideration for publication in Math. Proc. Camb. Phil. Soc. 2 The Insertion Encoding of Permutations
منابع مشابه
Pattern avoiding permutations are context - sensitive Murray Elder
We prove that a variant of the insertion encoding of Albert, Linton and Ruškuc for any class of pattern avoiding permutations is context-senstive. It follows that every finitely based class of permutations bijects to a context-sensitive language.
متن کاملEnumeration Schemes for Restricted Permutations
Zeilberger’s enumeration schemes can be used to completely automate the enumeration of many permutation classes. We extend his enumeration schemes so that they apply to many more permutation classes and describe the Maple package WilfPlus, which implements this process. We also compare enumeration schemes to three other systematic enumeration techniques: generating trees, substitution decomposi...
متن کاملA Stream Cipher Based on Chaotic Permutations
In this paper we introduce a word-based stream cipher consisting of a chaotic part operating as a chaotic permutation and a linear part, both of which designed on a finite field. We will show that this system can operate in both synchronized and self-synchronized modes. More specifically, we show that in the self-synchronized mode the stream cipher has a receiver operating as an unknown input o...
متن کاملPattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux
We define a class Ln,k of permutations that generalizes alternating (up-down) permutations. We then give bijective proofs of certain pattern-avoidance results for this class. The bijections employed include are a modified form of the RSK insertion algorithm and a different bijection with RSK-like properties. As a special case of our results, we give two bijections between the set A2n(1234) of a...
متن کاملCounting permutations with no long monotone subsequence via generating trees and the kernel method
We recover Gessel’s determinantal formula for the generating function of permutations with no ascending subsequence of length m + 1. The starting point of our proof is the recursive construction of these permutations by insertion of the largest entry. This construction is of course extremely simple. The cost of this simplicity is that we need to take into account in the enumeration m − 1 additi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 12 شماره
صفحات -
تاریخ انتشار 2005